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Camera Types &  
Camera Models



Camera Types
• Static/Fixed Camera 



Camera Types
• Wide angle and Fish-eye camera 



Camera Types
• Omni-directional camera 



Camera Types
• Pan-Tilt-Zoom (PTZ) camera  
• Speed-Dome Camera 



Camera Types
• Infrared (IR) Camera  



Camera Types
• Stereo camera  



Camera Types
• Infrared-based depth camera  



Motivation
• Getting more 3D information from images 



Motivation
• Getting more 3D information from images 
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Motivation
• Getting more 3D information from images 



Motivation
• Integrate multiple views 



Camera Projection Model
• Pinhole camera - also known as camera obscura, or 

"dark chamber”, is a simple camera without a lens and 
with a single small aperture, a pinhole – effectively a 
light-proof box with a small hole in one side. 



Camera Projection Model
• Pinhole camera model - describes the mathematical 

relationship between the coordinates of a 3D point and 
its projection onto the image plane of an ideal pinhole 
camera, where the camera aperture is described as a 
point and no lenses are used to focus light.  

The model does not include 
geometric distortions or 
blurring of unfocused 

objects caused by lenses 
and finite sized apertures.



Pinhole Camera Model
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Slide credit: Yung-Yu Chuang



Pinhole Camera Model

Slide credit: Yung-Yu Chuang
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Pinhole Camera Model

Slide credit: Yung-Yu Chuang
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Intrinsic Matrix

Slide credit: Yung-Yu Chuang

•  non-square pixels (digital video) 

•  skew 

•  radial distortion 
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•  non-square pixels (digital video) 

•  skew 

•  radial distortion 
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Distortion

Slide credit: Yung-Yu Chuang

No distortion Pin cushion Barrel 

•  Radial distortion of the image 
–  Caused by imperfect lenses 

–  Deviations are most noticeable for rays that pass 
through the edge of the lens 



Distortion
x" = x'*(1 + k1r2 + k2r4) + 2*p1x'*y' + p2(r2+2*x'2)  
y" = y'*(1 + k1r2 + k2r4) + p1(r2+2*y'2) + 2*p2*x'*y'  
where r2 = x'2+y'2		

dewarp 



Camera rotation and translation
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Slide credit: Yung-Yu Chuang



Two kinds of parameters

Slide credit: Yung-Yu Chuang

• internal or intrinsic parameters such as focal length, optical 
center, aspect ratio: 

• what kind of camera? 

• external or extrinsic (pose) parameters including rotation and 
translation: 

• where is the camera? 
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Camera Parameters 
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Other projection models

Slide credit: Yung-Yu Chuang



Orthographic projection

Slide credit: Yung-Yu Chuang

•  Special case of perspective projection 
–  Distance from the COP to the PP is infinite 

–  Also called “parallel projection”:  (x, y, z) � (x, y) 

Image World 



Other types of projections

Slide credit: Yung-Yu Chuang

•  Scaled orthographic 
–  Also called “weak perspective” 

•  Affine projection 
–  Also called “paraperspective” 
 



Illusion

Slide credit: Yung-Yu Chuang



Illusion

Slide credit: Yung-Yu Chuang



Fun with perspective

Slide credit: Yung-Yu Chuang



Fun with perspective

Slide credit: Yung-Yu Chuang



Fun with perspective

Slide credit: Yung-Yu Chuang



Fun with perspective

Slide credit: Yung-Yu Chuang

Ames room



Ames room



Forced perspective in LOTR



Two kinds of parameters

Slide credit: Yung-Yu Chuang

• internal or intrinsic parameters such as focal length, optical 
center, aspect ratio: 

• what kind of camera? 

• external or extrinsic (pose) parameters including rotation and 
translation: 

• where is the camera? 
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Camera Calibration



Camera Calibration

Slide credit: Yung-Yu Chuang

• Estimate both intrinsic and extrinsic parameters.  

• Two main categories: 

• Photometric calibration: uses reference objects (3D, 2D, 
1D, 0D) with known geometry 

• Self calibration: only assumes static scene, e.g. structure 
from motion 
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Camera Calibration
• Known 2D coordinates in the image and their corrresponding 

3D coordinates in the world, then we can solve the 
parameters by 

• linear regression (least squares) 
• nonlinear optimization 
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Camera Calibration

Z. Zhang, “Flexible Camera Calibration by Viewing a Plane from Unknown 
Orientations,” International Conference on Computer Vision (ICCV), 1999. 

(cited number: 2561 from Google) 

Z. Zhang, “A flexible new technique for camera calibration,” IEEE Transactions 
on Pattern Analysis and Machine Intelligence, 2000.  

(cited number: 9781 from Google) 



Multi-plane calibration  

Slide credit: Yung-Yu Chuang

 
 

Images courtesy Jean-Yves Bouguet, Intel Corp. 

Advantage 
•  Only requires a plane 
•  Don’t have to know positions/orientations 
•  Good code available online! 

–  Intel’s OpenCV library:  http://www.intel.com/research/mrl/research/opencv/  

–  Matlab version by Jean-Yves Bouget: 
 http://www.vision.caltech.edu/bouguetj/calib_doc/index.html 

–  Zhengyou Zhang’s web site:  http://research.microsoft.com/~zhang/Calib/  



Notation

²  2D point :  
²  3D point :  
²  The usual pinhole : 

          , with 
 
²  Using the abbreviation A-T for (A-1)T or (AT)-1 
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Estimating Homography

?



Homography
• Projective transformation 

• Defined in 2D space as a mapping between a point 
on a ground plane as seen from one camera, to the 
same point on the ground plane as seen from a 
second camera  
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Homography - Case 1
• Case 1: a mapping between image coordinates and 

ground plane coordinates 



Proof – Case 1 

• We assume the model plane is on Z = 0, then 

[ ] [ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1
1
0

1
21321 Y

X
trrA

Y
X

trrrAy
x

s

[ ]trrAHMHm 21   with ,~~ ==s

²  2D point :  
²  3D point :  
²  The usual pinhole : 

          , with 
 
²  Using the abbreviation A-T for (A-1)T or (AT)-1 
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Homography - Case 2
• Case 1: a mapping between a point on a ground 

plane as seen from one camera, to the same point 
on the ground plane as seen from a second camera  



Proof – Case 2 

²  m1	is	the	image	coordinate	of	Camera	1	
²  m2	is	the	image	coordinate	of	Camera	2	
²  M	is	the	coordinate	on	the	ground	plane	
²  From	Case	1:		
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Homography - Case 3
• Case 1: a mapping between image coordinates of 

Camera 1 and image coordinates of Camera 2, 
where Camera 1 and Camera 2 is located in the 
same position  

O 

Image 1 

Image 2 



Proof – Case 3 O 

Image 1 

Image 2 

	
²  Let	the	position	of	camera	is	(0,	0,	0)	in	the	global	
coordinate	system,	then�
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Proof – Case 3 O 

Image 1 

Image 2 
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Application of Homography  
- Projector-Camera System  



Estimating Homography
• Case 1: a mapping between 

image coordinates and ground 
plane coordinates 
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Estimating Homography

²  Without loss of generality, we assume the 
model plane is on Z = 0 
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Constraints on Intrinsic Parameters

²  Denote 
 then  

 
²  Since r1 and r2 are orthonormal 
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²  Without loss of generality, we assume the 
model plane is on Z = 0 
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Closed-Form Solution
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Closed-Form Solution
²  B is symmetric, defined by a 6D vector 
 
²  Let ith column vector of H be  

 with 
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Closed-Form Solution

²  Therefore, two constrains can be written 
as 

²  If n images of the model plane are 
observed 

 where V is a 2n × 6 matrix 
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Closed-Form Solution

²  If n � 3, we will have in general a unique 
solution b defined up to a scale factor 

 
²  The solution is well-known as the 

eigenvector of VTV associated with the 
smallest eigenvalue  



Closed-Form Solution

²  Once b is estimated, then 
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Step 1: data acquisition
Slide credit: Yung-Yu Chuang



Step 2: specify corner order
Slide credit: Yung-Yu Chuang



Step 3: corner extraction
Slide credit: Yung-Yu Chuang



Step 3: corner extraction
Slide credit: Yung-Yu Chuang



Step 4: minimize projection error
Slide credit: Yung-Yu Chuang



Step 4: camera calibration
Slide credit: Yung-Yu Chuang



Step 4: camera calibration
Slide credit: Yung-Yu Chuang



Step 5: refinement
Slide credit: Yung-Yu Chuang



Optimized parameters
Slide credit: Yung-Yu Chuang



Camera parameters

scene point 

optical
 center 

image plane 
Intrinsic parameters: 
Image coordinates relative to
 camera ßà Pixel coordinates 

Extrinsic parameters: 
Camera frame 1 ßà Camera frame 2 

•  Extrinsic params: rotation matrix and translation vector 
•  Intrinsic params: focal length, pixel sizes (mm), image center

 point, radial distortion parameters 

We’ll assume for now that these parameters are
 given and fixed. 



Epipolar Geometry

CC’: baseline 
e, e’: epipole 
xie, x’ie: epipolar line 
π: epipolar plane 

The corresponding point must lie on the epipolar line



Epipolar Geometry

F: fundamental matrix 
E: essential matrix
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