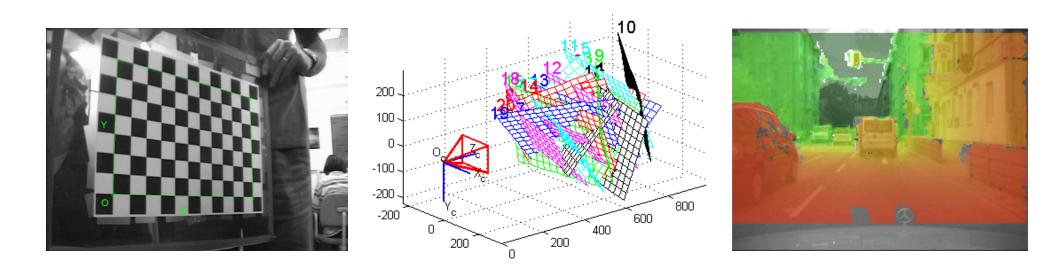
Camera Calibration & Depth Estimation

Kuan-Wen Chen 2018/3/22



Camera Types & Camera Models

• Static/Fixed Camera

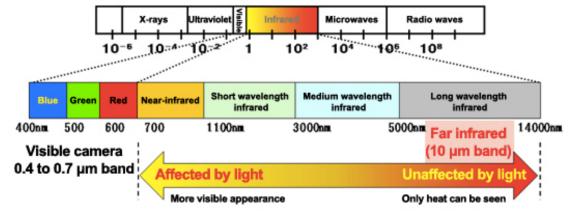
• Wide angle and Fish-eye camera

• Omni-directional camera

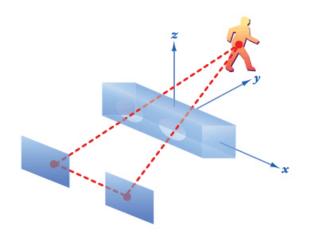
- Pan-Tilt-Zoom (PTZ) camera
- Speed-Dome Camera

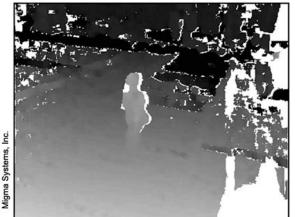
• Infrared (IR) Camera

Generally, light known as infrared rays indicates electromagnetic waves on the optical wavelength with a longer wavelength of between 0.7 μm and 1 mm.

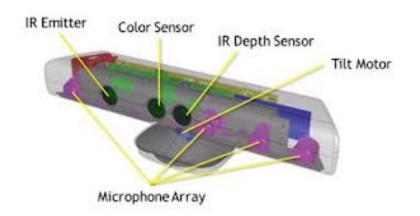


Stereo camera



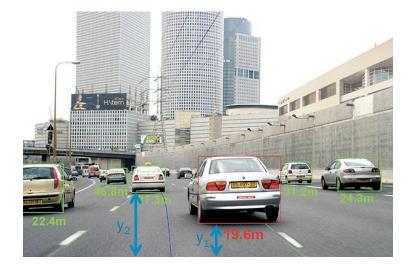


• Infrared-based depth camera



• Getting more 3D information from images

• Getting more 3D information from images



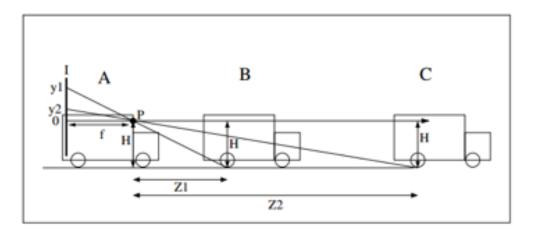
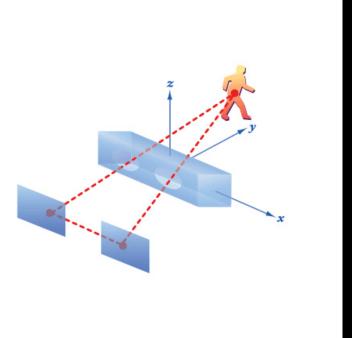
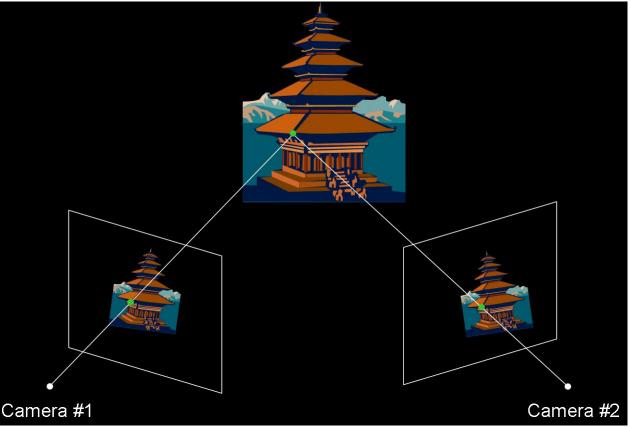


Figure 2: Schematic diagram of the imaging geometry (see text).

• Getting more 3D information from images

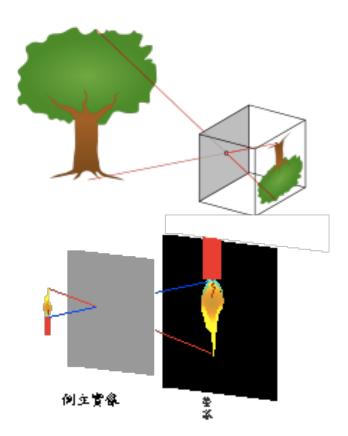




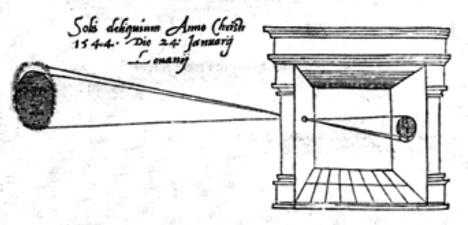
• Integrate multiple views

Camera Projection Model

• **Pinhole camera** - also known as camera obscura, or "dark chamber", is a simple camera without a lens and with a single small aperture, a pinhole – effectively a light-proof box with a small hole in one side.



illum in tabula per radios Solis, quâm in cœlo contingit: hoc eft,fi in cœlo fuperior pars deliquiũ patiatur,in radiis apparebit inferior deficere,vt ratio exigit optica.

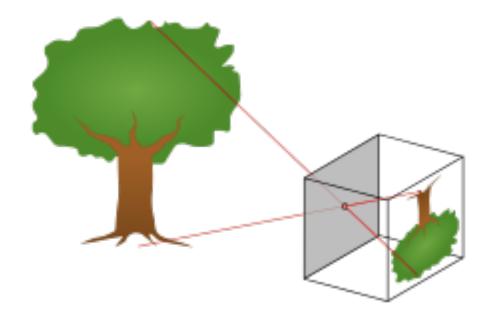


Sic nos exacté Anno . 1544 . Louanii eclipfim Solis obferuauimus, inuenimusq; deficere paulò plus g dex-

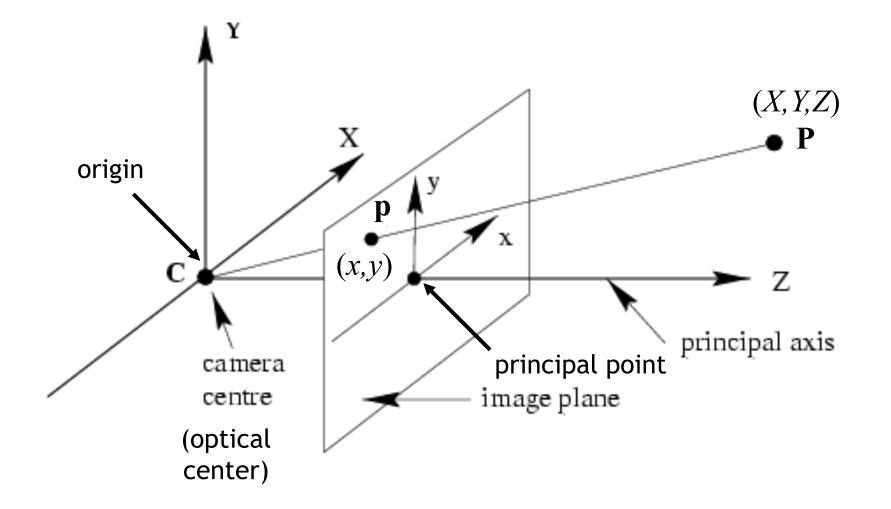
Camera Projection Model

• **Pinhole camera model** - describes the mathematical relationship between the coordinates of a 3D point and its projection onto the image plane of an ideal pinhole camera, where the camera aperture is described as a point and no lenses are used to focus light.

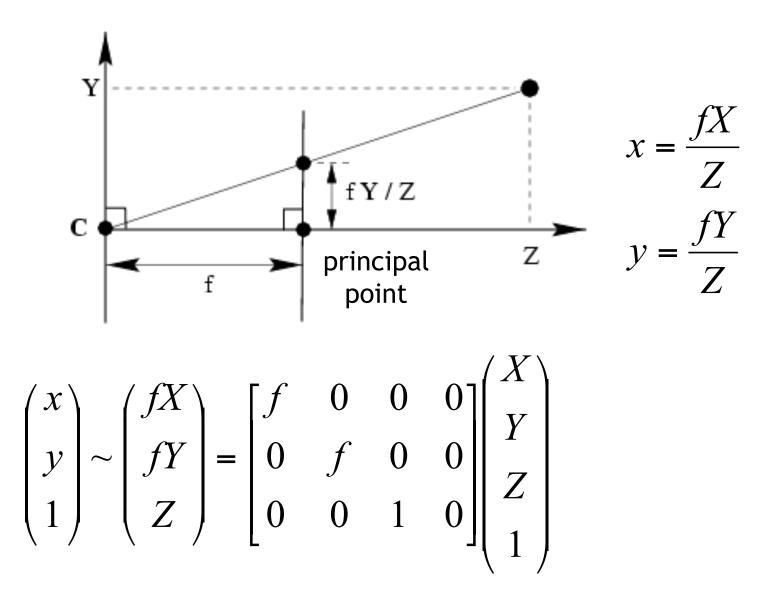
The model does not include geometric distortions or blurring of unfocused objects caused by lenses and finite sized apertures.



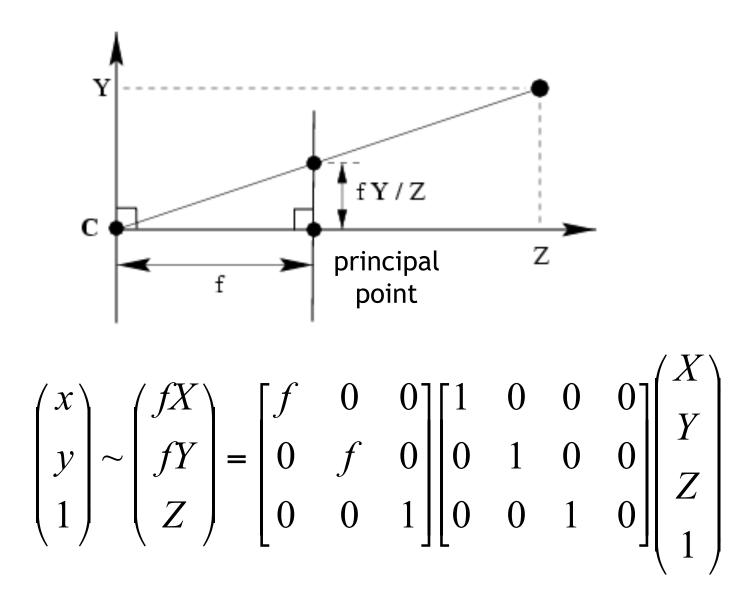
Pinhole Camera Model



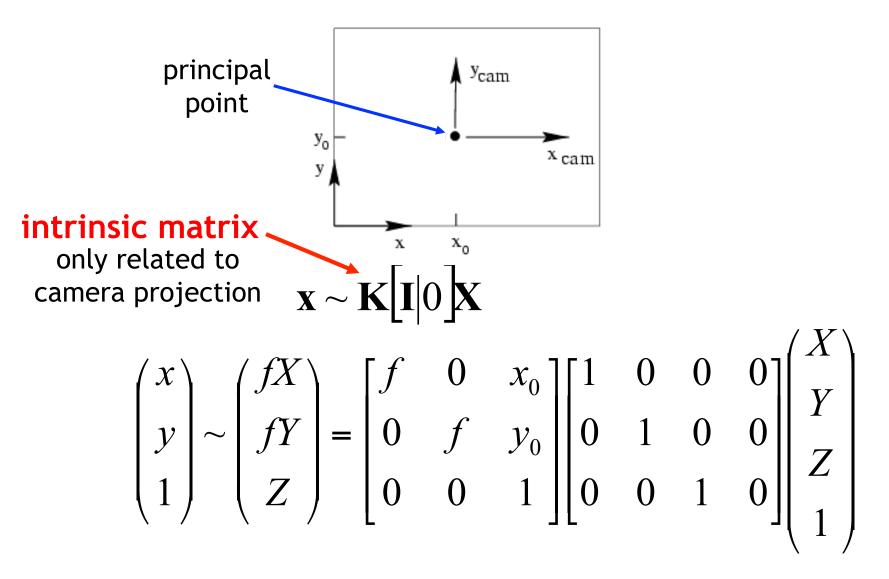
Pinhole Camera Model



Pinhole Camera Model



Principal point offset



Intrinsic Matrix

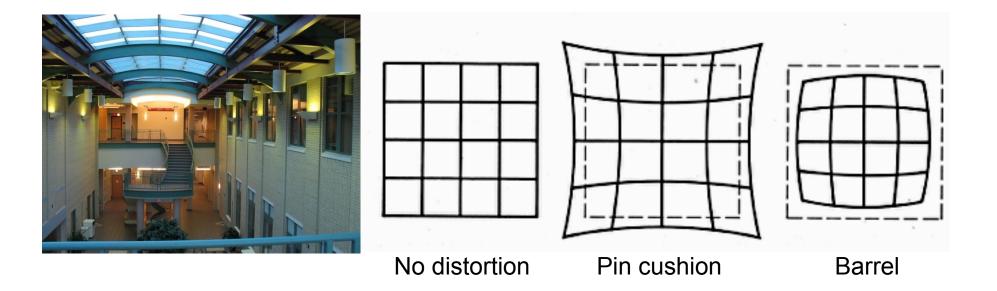
Is this form of K good enough?

$$\mathbf{K} = \begin{bmatrix} f & 0 & x_0 \\ 0 & f & y_0 \\ 0 & 0 & 1 \end{bmatrix}$$

- non-square pixels (digital video)
- skew
 radial distortion

$$\mathbf{K} = \begin{bmatrix} fa & s & x_0 \\ 0 & f & y_0 \\ 0 & 0 & 1 \end{bmatrix}$$

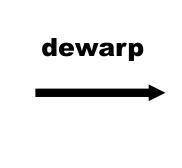
Distortion



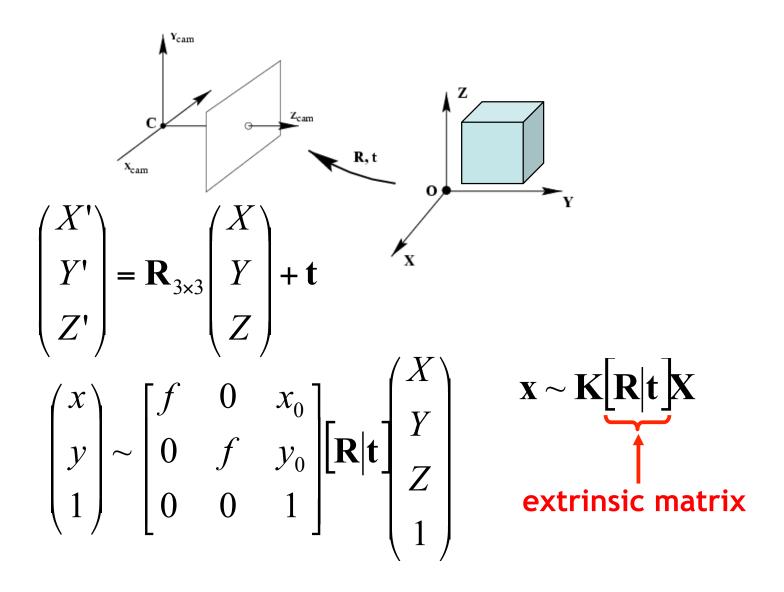
- Radial distortion of the image
 - Caused by imperfect lenses
 - Deviations are most noticeable for rays that pass through the edge of the lens

Distortion

$$\begin{aligned} x'' &= x'^*(1 + k_1r^2 + k_2r^4) + 2^*p_1x'^*y' + p_2(r^2 + 2^*x'^2) \\ y'' &= y'^*(1 + k_1r^2 + k_2r^4) + p_1(r^2 + 2^*y'^2) + 2^*p_2^*x'^*y' \\ \text{where } r^2 &= x'^2 + y'^2 \end{aligned}$$



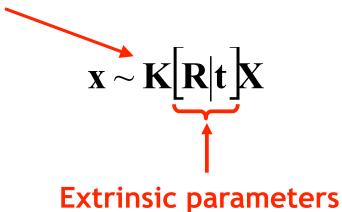
Camera rotation and translation



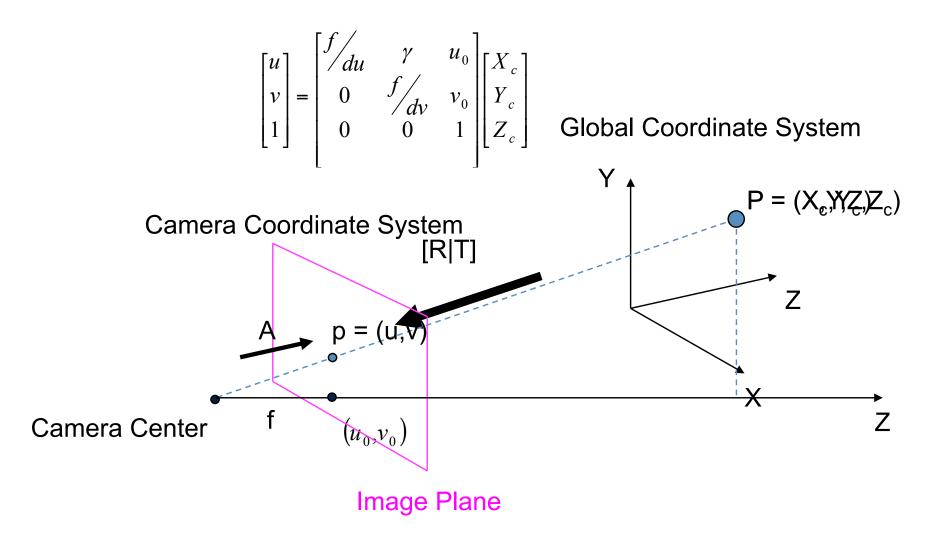
Two kinds of parameters

- internal or intrinsic parameters such as focal length, optical center, aspect ratio:
 - what kind of camera?
- external or extrinsic (pose) parameters including rotation and translation:
 - where is the camera?

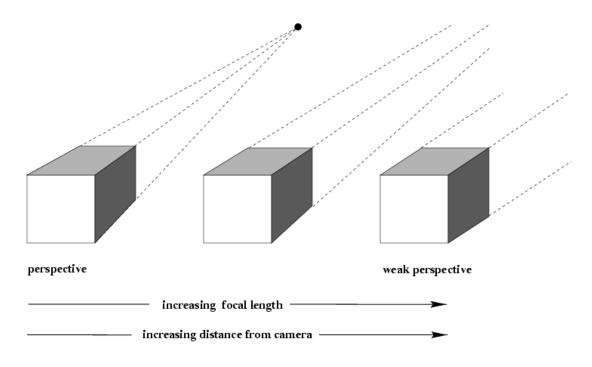
Intrinsic parameters



Camera Parameters

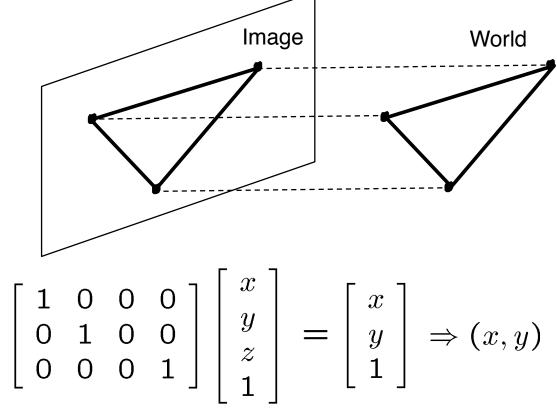


Other projection models



Orthographic projection

- Special case of perspective projection
 - Distance from the COP to the PP is infinite



- Also called "parallel projection": $(x, y, z) \rightarrow (x, y)$

Other types of projections

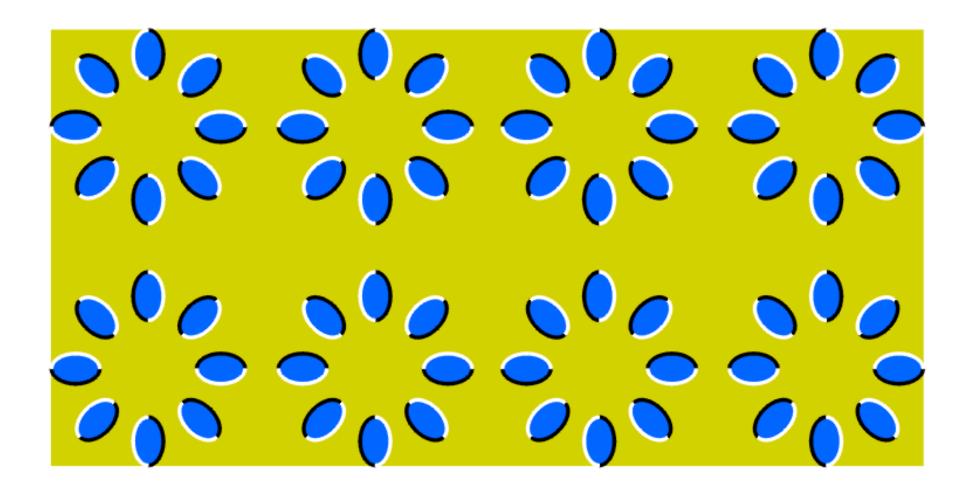
- Scaled orthographic
 - Also called "weak perspective"

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1/d \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ 1/d \end{bmatrix} \Rightarrow (dx, dy)$$

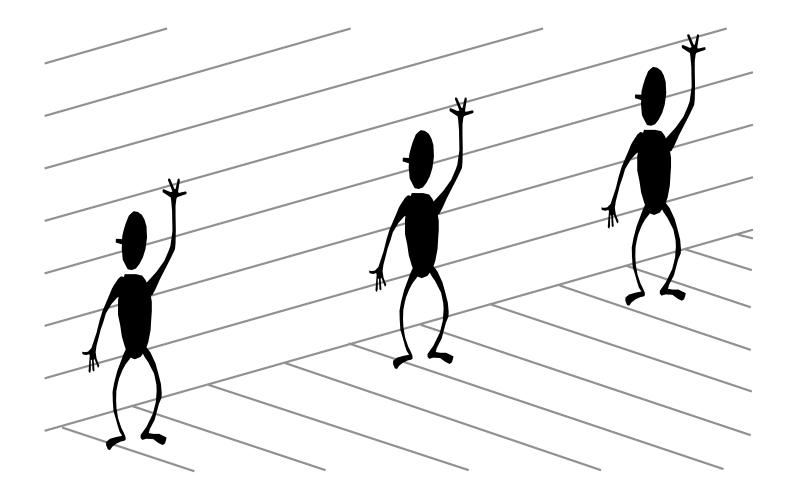
- Affine projection
 - Also called "paraperspective"

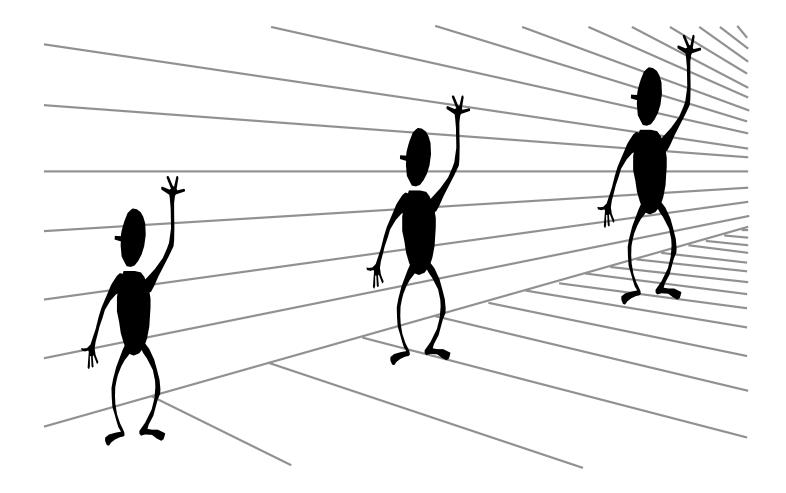
$$\left[\begin{array}{rrrr}a&b&c&d\\e&f&g&h\\0&0&0&1\end{array}\right]\left[\begin{array}{r}x\\y\\z\\1\end{array}\right]$$

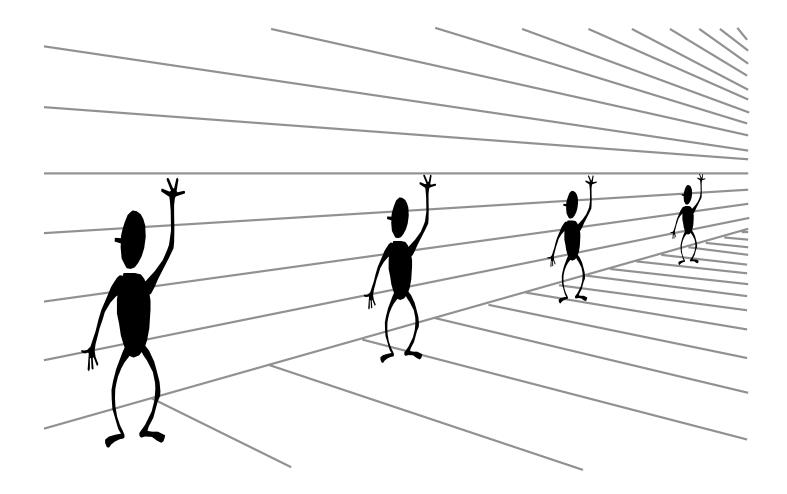
Illusion

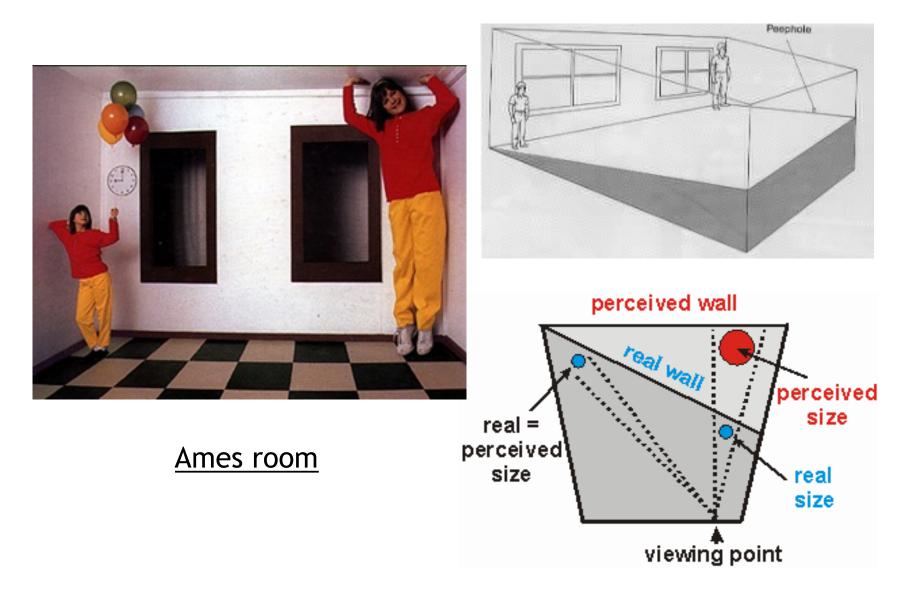


Illusion

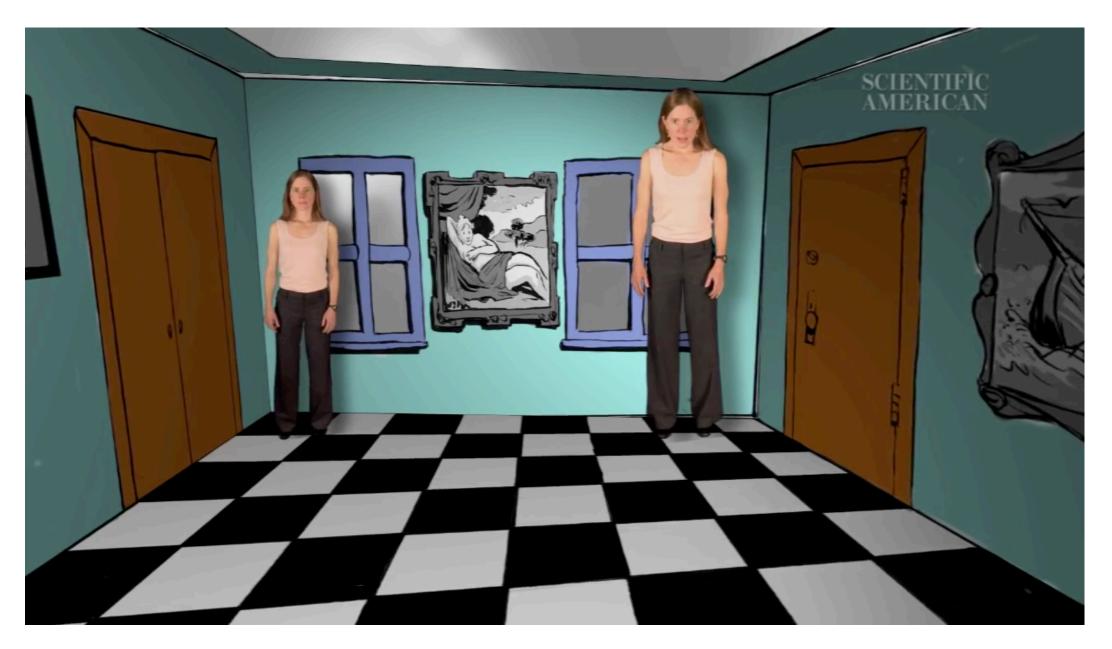








Ames room

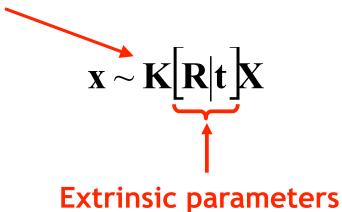


Forced perspective in LOTR

Two kinds of parameters

- internal or intrinsic parameters such as focal length, optical center, aspect ratio:
 - what kind of camera?
- external or extrinsic (pose) parameters including rotation and translation:
 - where is the camera?

Intrinsic parameters



Slide credit: Yung-Yu Chuang

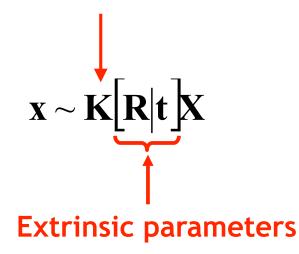
- Estimate both intrinsic and extrinsic parameters.
- Two main categories:
 - Photometric calibration: uses reference objects (3D, 2D, 1D, 0D) with known geometry
 - Self calibration: only assumes static scene, e.g. structure from motion

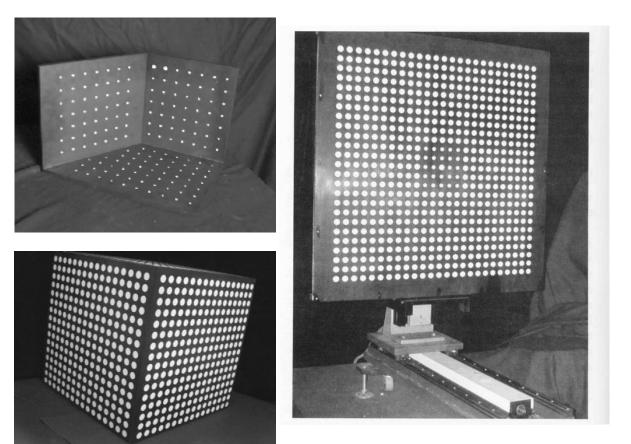
Intrinsic parameters

 $\mathbf{x} \sim \mathbf{K} [\mathbf{R}|\mathbf{t}] \mathbf{X}$ **Extrinsic parameters**

Slide credit: Yung-Yu Chuang

- Known 2D coordinates in the image and their corrresponding 3D coordinates in the world, then we can solve the parameters by
 - linear regression (least squares)
 - nonlinear optimization

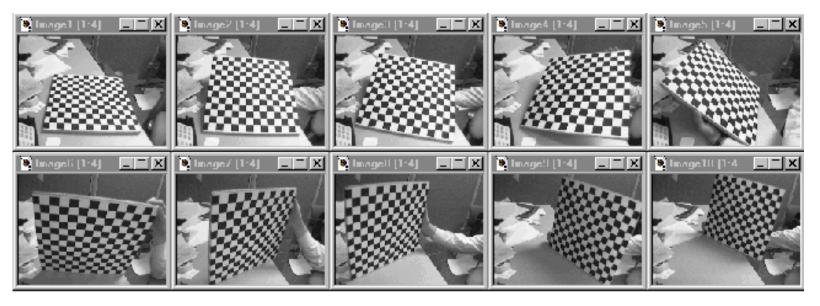




Z. Zhang, "Flexible Camera Calibration by Viewing a Plane from Unknown Orientations," *International Conference on Computer Vision (ICCV)*, 1999. (cited number: 2561 from Google)

Z. Zhang, "A flexible new technique for camera calibration," *IEEE Transactions* on Pattern Analysis and Machine Intelligence, 2000. (cited number: 9781 from Google)

Multi-plane calibration



Images courtesy Jean-Yves Bouguet, Intel Corp.

Advantage

- Only requires a plane
- Don't have to know positions/orientations
- Good code available online!
 - Intel's OpenCV library: http://www.intel.com/research/mrl/research/opencv/
 - Matlab version by Jean-Yves Bouget: <u>http://www.vision.caltech.edu/bouguetj/calib_doc/index.html</u>
 - Zhengyou Zhang's web site: <u>http://research.microsoft.com/~zhang/Calib/</u>

Slide credit: Yung-Yu Chuang

Notation

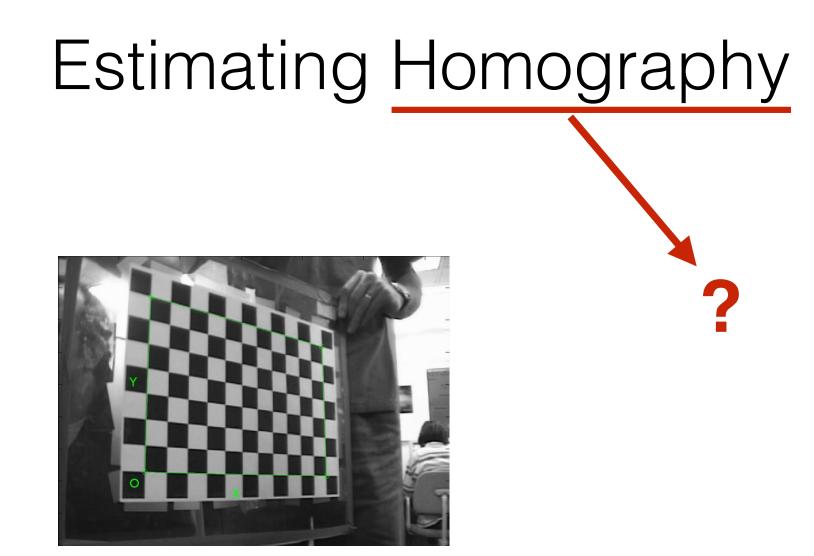
 $\boldsymbol{x} \sim \boldsymbol{K} \! \left[\boldsymbol{R} \middle| \boldsymbol{t} \right] \! \boldsymbol{X}$

◇ 2D point :
$$m = [u, v]^T \longrightarrow \widetilde{m} = [u, v, 1]^T$$
◇ 3D point : $M = [X, Y, Z]^T \longrightarrow \widetilde{M} = [X, Y, Z, 1]^T$

The usual pinhole :

$$s\widetilde{m} = A[R \mid t]\widetilde{M}$$
, with $A = \begin{bmatrix} \alpha & \gamma & u_0 \\ 0 & \beta & v_0 \\ 0 & 0 & 1 \end{bmatrix}$

• Using the abbreviation A^{-T} for $(A^{-1})^{T}$ or $(A^{T})^{-1}$



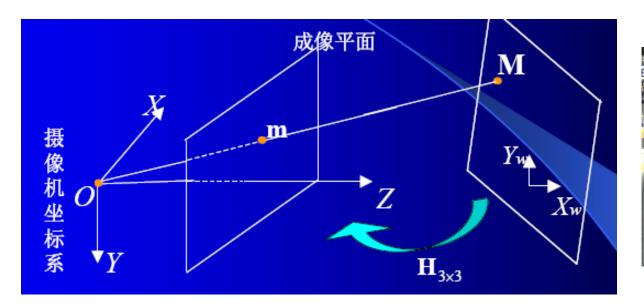
Homography

- Projective transformation
- Defined in 2D space as a mapping between a point on a ground plane as seen from one camera, to the same point on the ground plane as seen from a second camera

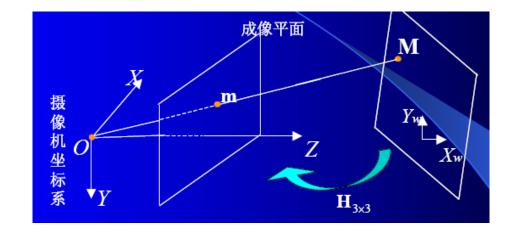
$$s \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
8 unknowns
- at least 4 points
are needed
Homography

Homography - Case 1

• Case 1: a mapping between image coordinates and ground plane coordinates



$$Proof - Case 1$$
$$s\widetilde{m} = A[R | t]\widetilde{M}$$

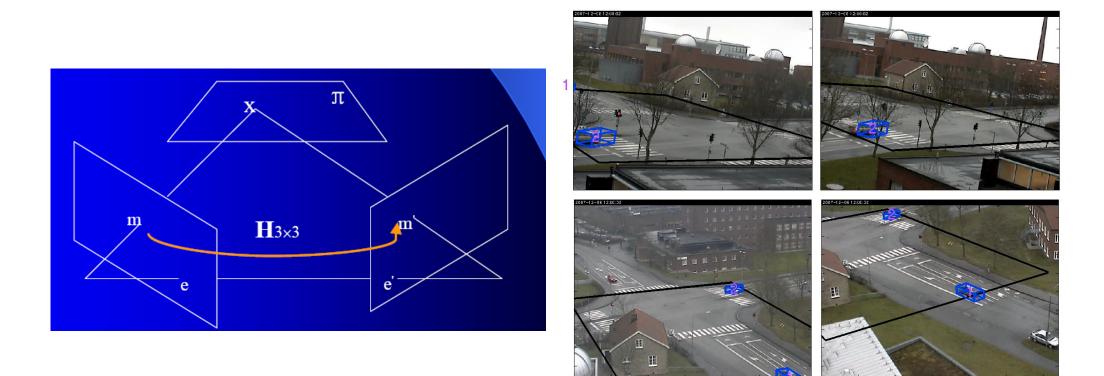


• We assume the model plane is on Z = 0, then

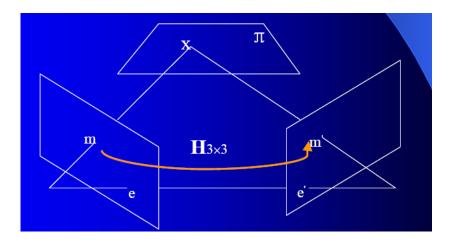
$$s\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \mathbf{A} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{r}_3 & \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{X} \\ \mathbf{Y} \\ 0 \\ 1 \end{bmatrix} = \mathbf{A} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{X} \\ \mathbf{Y} \\ 0 \\ 1 \end{bmatrix}$$
$$s\widetilde{\mathbf{m}} = \mathbf{H}\widetilde{\mathbf{M}}, \text{ with } \mathbf{H} = \mathbf{A} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{t} \end{bmatrix}$$

Homography - Case 2

• Case 1: a mapping between a point on a ground plane as seen from one camera, to the same point on the ground plane as seen from a second camera



Proof – Case 2



- \bullet m₁ is the image coordinate of Camera 1
- m₂ is the image coordinate of Camera 2
- M is the coordinate on the ground plane
- From Case 1:

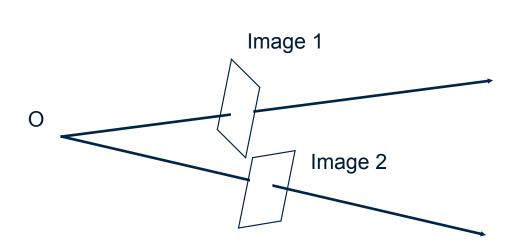
$$s_1 \widetilde{\mathbf{m}}_1 = \mathbf{H}_1 \widetilde{\mathbf{M}}$$

 $s_2 \widetilde{\mathbf{m}}_2 = \mathbf{H}_2 \widetilde{\mathbf{M}} \longrightarrow s \widetilde{\mathbf{m}}_2 = \mathbf{H}_2 \mathbf{H}_1^{-1} \widetilde{\mathbf{m}}_1$

$$\implies s\widetilde{\mathbf{m}}_2 = \mathbf{H}\widetilde{\mathbf{m}}_2$$

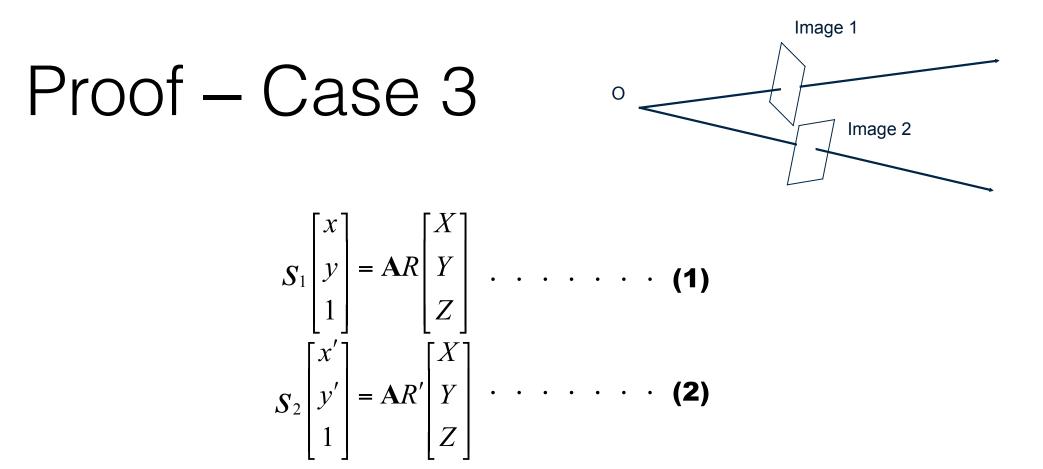
Homography - Case 3

 Case 1: a mapping between image coordinates of Camera 1 and image coordinates of Camera 2, where Camera 1 and Camera 2 is located in the same position



 Let the position of camera is (0, 0, 0) in the global coordinate system, then

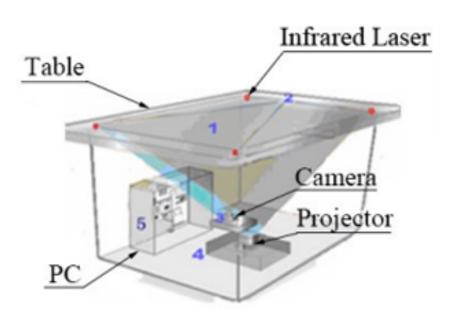
$$s \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \mathbf{A} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{r}_3 & 0 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix} = \mathbf{A} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{r}_3 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \mathbf{A} R \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$



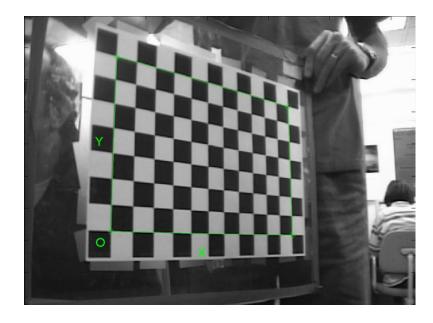
From (1), (2) :

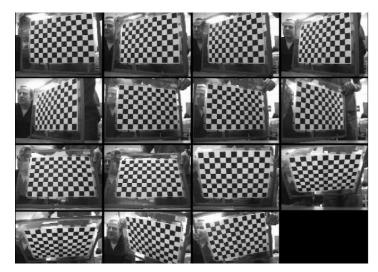
$$S\begin{bmatrix}x'\\y'\\1\end{bmatrix} = \mathbf{A}\mathbf{R}'\mathbf{R}\mathbf{A}^{-1}\begin{bmatrix}x\\y\\1\end{bmatrix} = H\begin{bmatrix}x\\y\\1\end{bmatrix}$$

Application of Homography - Projector-Camera System

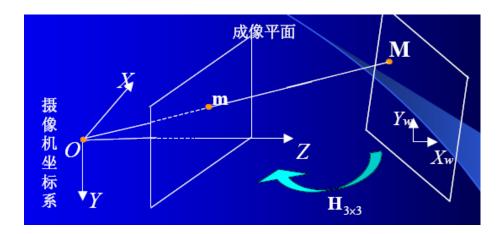


Estimating Homography





 Case 1: a mapping between image coordinates and ground plane coordinates



$$s \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Estimating Homography

 Without loss of generality, we assume the model plane is on Z = 0

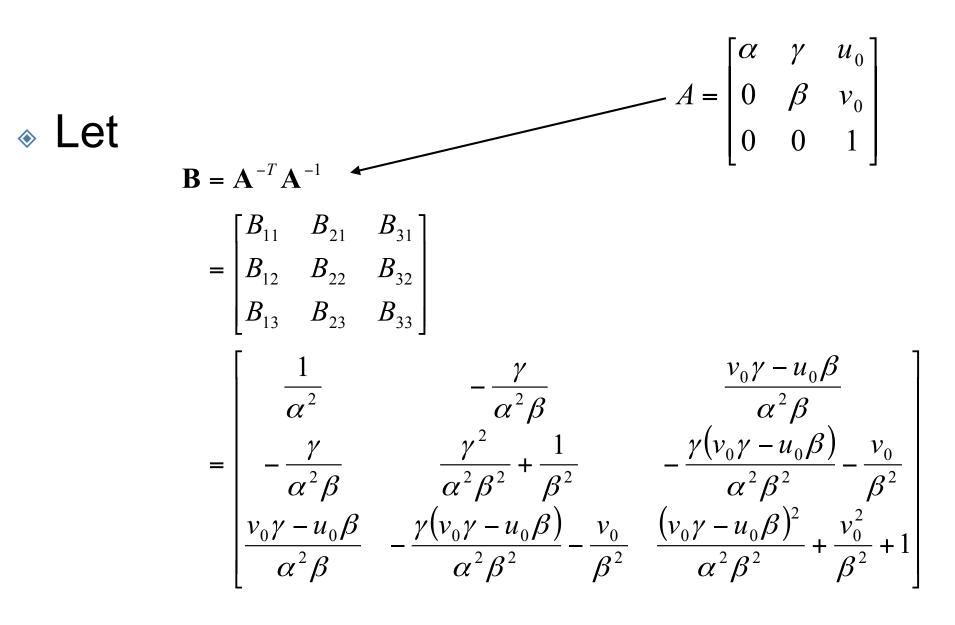
$$s\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \mathbf{A} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{r}_3 & \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{X} \\ \mathbf{Y} \\ 0 \\ 1 \end{bmatrix} = \mathbf{A} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{X} \\ \mathbf{Y} \\ 1 \end{bmatrix}$$
$$s\widetilde{\mathbf{m}} = \mathbf{H}\widetilde{\mathbf{M}}, \text{ with } \mathbf{H} = \mathbf{A} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{t} \end{bmatrix}$$

Constraints on Intrinsic Parameters

$$\mathbf{H} = \mathbf{A} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{t} \end{bmatrix}$$

- ♦ Denote $\mathbf{H} = \begin{bmatrix} \mathbf{h}_1 & \mathbf{h}_2 & \mathbf{h}_3 \end{bmatrix}$ then $\begin{bmatrix} \mathbf{h}_1 & \mathbf{h}_2 & \mathbf{h}_3 \end{bmatrix} = \lambda \mathbf{A} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{t} \end{bmatrix}$ $\mathbf{F}_1 = \mathbf{A}^{-1} \mathbf{h}_1$ $\mathbf{r}_2 = \mathbf{A}^{-1} \mathbf{h}_2$
- Since r₁ and r₂ are orthonormal

$$\begin{cases} \|\mathbf{r}_1\| = \|\mathbf{r}_2\| \\ \mathbf{r}_1 \cdot \mathbf{r}_2 = \mathbf{0} \end{cases} \longrightarrow \begin{cases} \mathbf{h}_1^T \mathbf{A}^{-T} \mathbf{A}^{-1} \mathbf{h}_1 = \mathbf{h}_2^T \mathbf{A}^{-T} \mathbf{A}^{-1} \mathbf{h}_2 \\ \mathbf{h}_1^T \mathbf{A}^{-T} \mathbf{A}^{-1} \mathbf{h}_2 = \mathbf{0} \end{cases}$$



 $\mathbf{b} = \begin{bmatrix} B_{11} & B_{12} & B_{22} & B_{13} & B_{23} & B_{33} \end{bmatrix}^T$ $\mathbf{b} = \begin{bmatrix} B_{11} & B_{12} & B_{22} & B_{13} & B_{23} & B_{33} \end{bmatrix}^T$ $\mathbf{b} = \begin{bmatrix} A_{11} & A_{12} & A_{13} \end{bmatrix}^T$

$$\mathbf{h}_i^T \mathbf{B} \boldsymbol{h}_j = \mathbf{v}_{ij}^T \mathbf{b}$$

with
$$\mathbf{v}_{ij} = \begin{bmatrix} h_{i1}h_{j1} & h_{i1}h_{j2} + h_{i2}h_{j1} & h_{i2}h_{j2} \\ h_{i3}h_{j1} + h_{i1}h_{j3} & h_{i3}h_{j2} + h_{i2}h_{j3} & h_{i3}h_{j3} \end{bmatrix}$$

 $\begin{cases} \mathbf{h}_1^T \mathbf{A}^{-T} \mathbf{A}^{-1} \mathbf{h}_1 = \mathbf{h}_2^T \mathbf{A}^{-T} \mathbf{A}^{-1} \mathbf{h}_2 \\ \mathbf{h}_1^T \mathbf{A}^{-T} \mathbf{A}^{-1} \mathbf{h}_2 = \mathbf{0} \end{cases}$

$$\begin{cases} \mathbf{h}_1^T \mathbf{A}^{-T} \mathbf{A}^{-1} \mathbf{h}_1 = \mathbf{h}_2^T \mathbf{A}^{-T} \mathbf{A}^{-1} \mathbf{h}_2 \\ \mathbf{h}_1^T \mathbf{A}^{-T} \mathbf{A}^{-1} \mathbf{h}_2 = \mathbf{0} \end{cases}$$

 Therefore, two constrains can be written as

$$\begin{bmatrix} \mathbf{v}_{12}^T \\ (\mathbf{v}_{11} - \mathbf{v}_{22})^T \end{bmatrix} \mathbf{b} = \mathbf{0}$$

 If n images of the model plane are observed

$$\mathbf{V}\mathbf{b} = 0$$

where V is a $2n \times 6$ matrix

- $_{\diamond}$ If n \geq 3, we will have in general a unique solution b defined up to a scale factor
- The solution is well-known as the eigenvector of V^TV associated with the smallest eigenvalue

Once b is estimated, then

$$v_{0} = (B_{12}B_{13} - B_{11}B_{23})/(B_{11}B_{22} - B_{12}^{2})$$

$$\lambda = B_{33} - [B_{13}^{2} + v_{0}(B_{12}B_{13} - B_{11}B_{23})]/B_{11}$$

$$\alpha = \sqrt{\lambda/B_{11}}$$

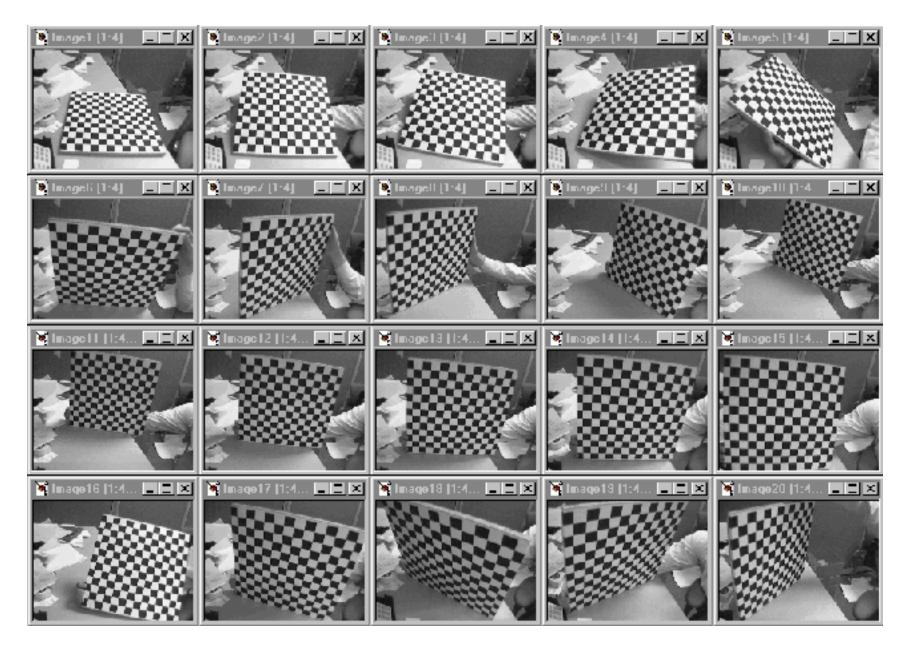
$$\beta = \sqrt{\lambda B_{11}}/(B_{11}B_{22} - B_{12}^{2})$$

$$\gamma = -B_{12}\alpha^{2}\beta/\lambda$$

$$u_{0} = \gamma v_{0}/\beta - B_{13}\alpha^{2}/\gamma$$

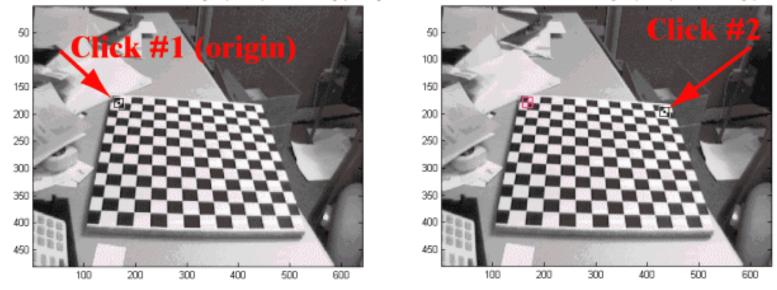
$$A = \begin{bmatrix} \alpha & \gamma & u_{0} \\ 0 & \beta & v_{0} \\ 0 & 0 & 1 \end{bmatrix}$$

Step 1: data acquisition

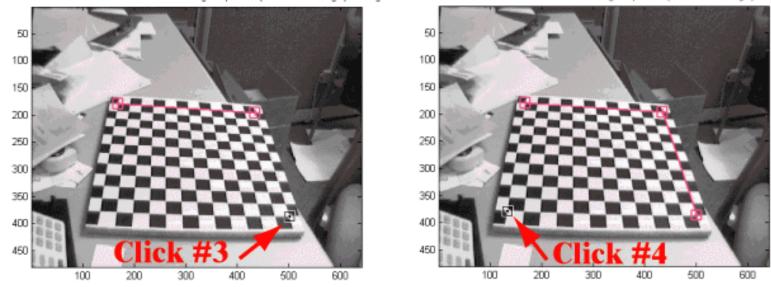


Step 2: specify corner order

Click on the four extreme corners of the rectangular pattern (first corner = origin)... Image 1 Click on the four extreme corners of the rectangular pattern (first corner = origin)... Image 1



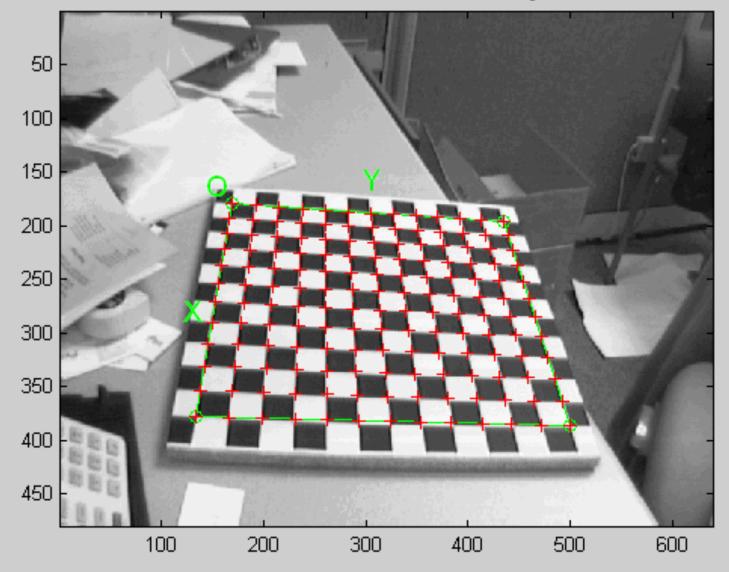
Click on the four extreme comers of the rectangular pattern (first corner = origin)... Image 1 Click on the four extreme comers of the rectangular pattern (first corner = origin)... Image 1



Slide credit: Yung-Yu Chuang

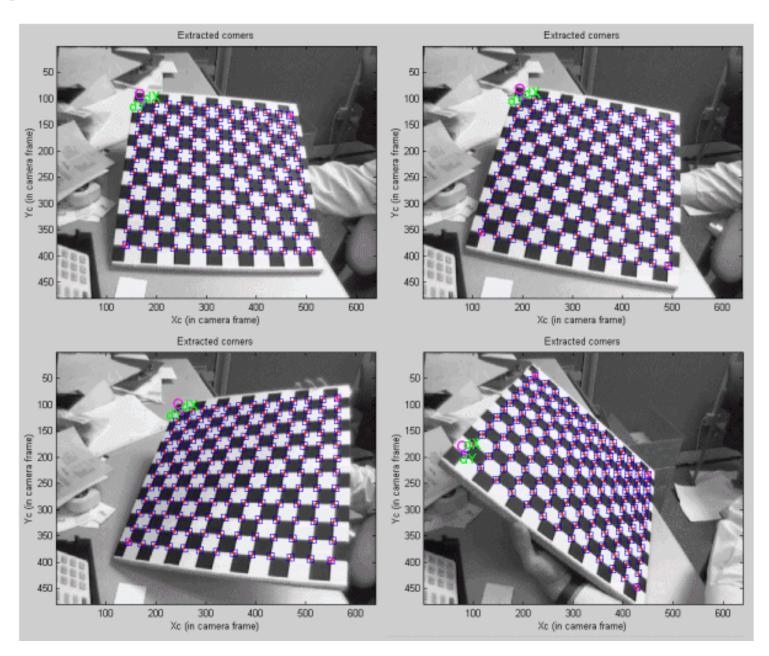
Step 3: corner extraction

The red crosses should be close to the image corners

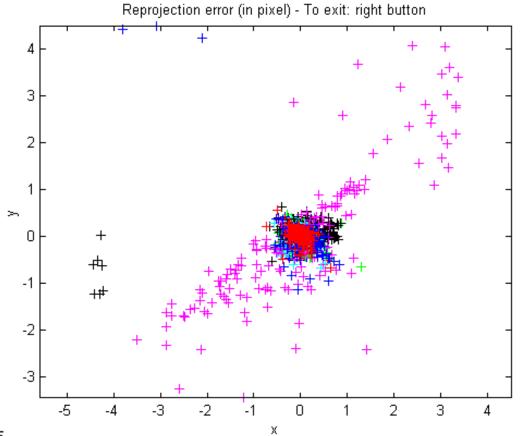


Slide credit: Yung-Yu Chuang

Step 3: corner extraction



Step 4: minimize projection error

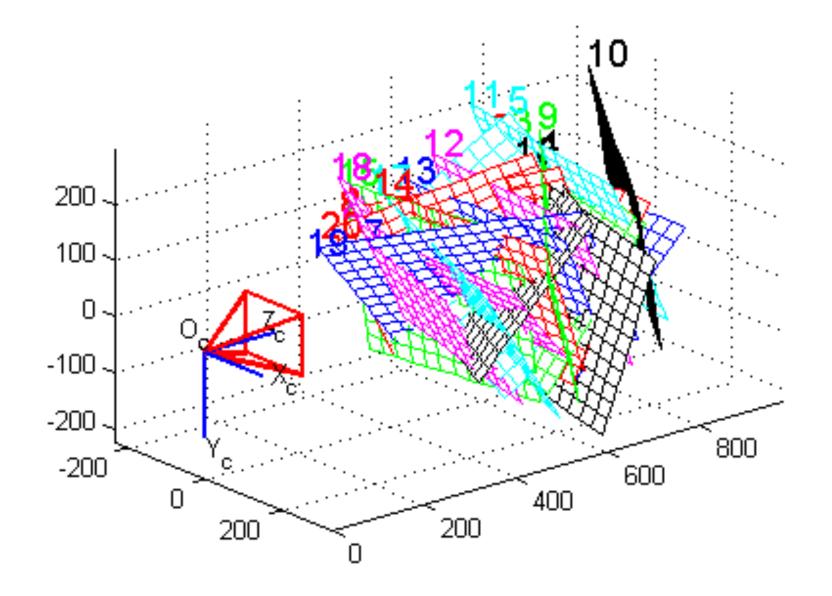


Calibration res

Focal Length:	fc = [657.46290 657.94673] ± [0.31819 0.34046]
Principal point:	cc = [303.13665 242.56935] ± [0.64682 0.59218]
Skew:	alpha_c = [0.00000] ± [0.00000] => angle of pixel axes =
Distortion:	kc = [-0.25403 0.12143 -0.00021 0.00002 0.00000]
Pixel error:	err = [0.11689 0.11500]

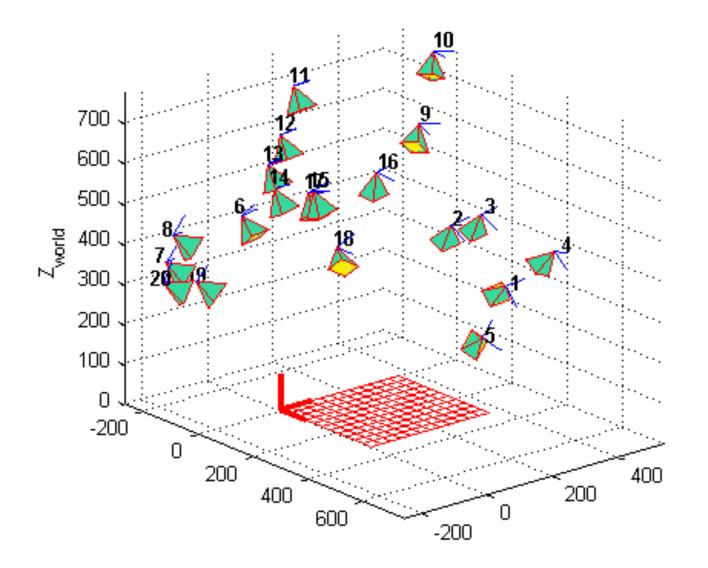
Slide credit: Yung-Yu Chuang

Step 4: camera calibration

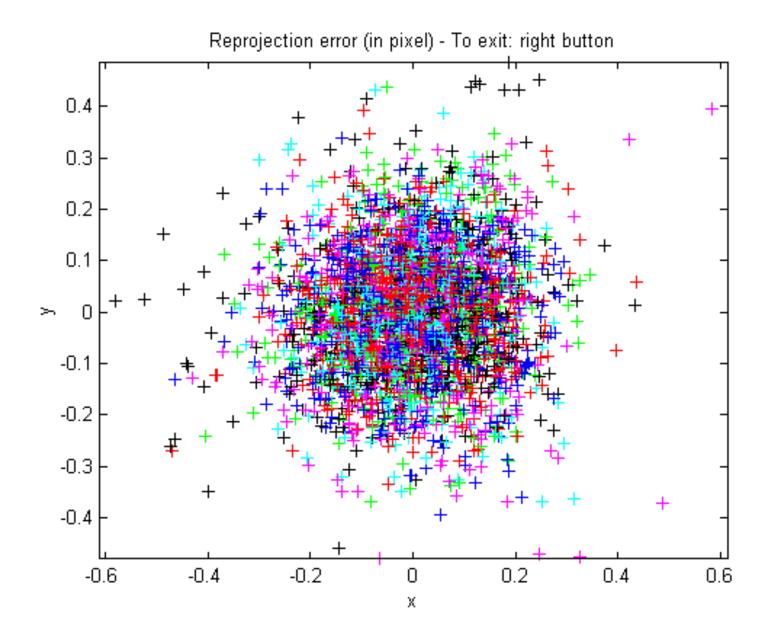


Slide credit: Yung-Yu Chuang

Step 4: camera calibration



Step 5: refinement



Optimized parameters

Aspect ratio optimized (est_aspect_ratio = 1) -> both components of fc are estimated (DEFAULT). Principal point optimized (center_optim=1) - (DEFAULT). To reject principal point, set center_optim=0 Skew not optimized (est_alpha=0) - (DEFAULT) Distortion not fully estimated (defined by the variable est_dist): Sixth order distortion not estimated (est_dist(5)=0) - (DEFAULT) .

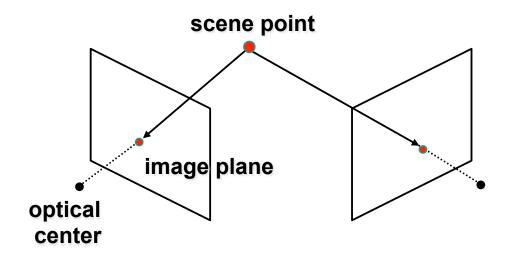
Main calibration optimization procedure - Number of images: 20 Gradient descent iterations: 1...2...3...4...5...done Estimation of uncertainties...done

Calibration results after optimization (with uncertainties):

```
Focal Length:
                     fc = [ 657.46290 657.94673 ] ± [ 0.31819
                                                                0.34046 ]
Principal point:
                    cc = [ 303.13665
                                       242.56935 ] ± [ 0.64682 0.59218 ]
                 alpha c = [ 0.00000 ] ± [ 0.00000 ] => angle of pixel axes = 90.00000 ± 0.00000 degrees
Skew:
Distortion:
                                      0.12143 - 0.00021 0.00002 0.00000 ] \pm [ 0.00248 ]
                     kc = [ −0.25403
                                                                                          0.00986
                                                                                                    0.00
Pixel error:
                    err = [ 0.11689
                                      0.11500 ]
```

Note: The numerical errors are approximately three times the standard deviations (for reference).

Camera parameters



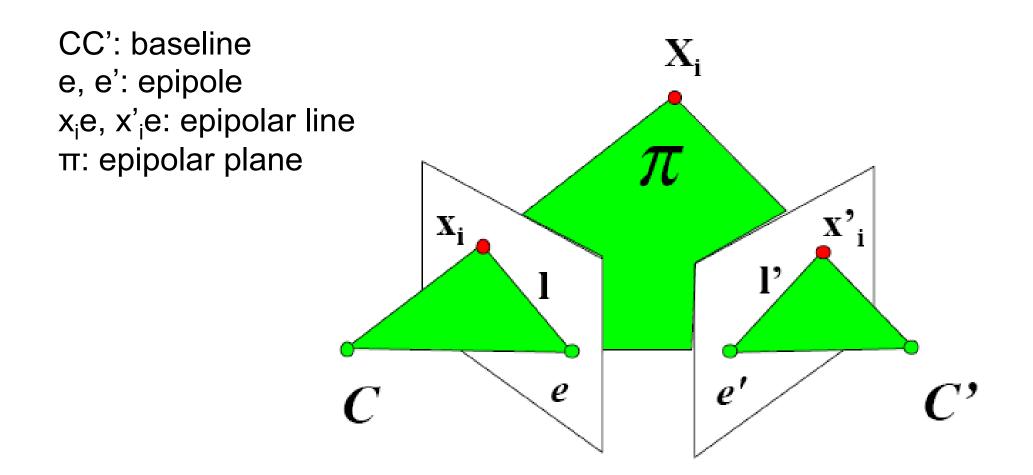
Extrinsic parameters: Camera frame $1 \leftarrow \rightarrow$ Camera frame 2

Intrinsic parameters: Image coordinates relative to camera $\leftarrow \rightarrow$ Pixel coordinates

- *Extrinsic* params: rotation matrix and translation vector
- Intrinsic params: focal length, pixel sizes (mm), image center point, radial distortion parameters

We'll assume for now that these parameters are given and fixed.

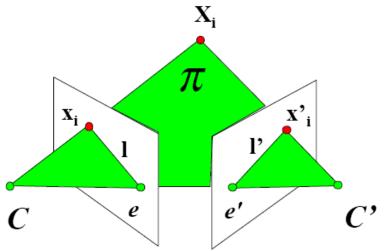
Epipolar Geometry



The corresponding point must lie on the epipolar line

Epipolar Geometry

F: fundamental matrix E: essential matrix



$$\widetilde{X}'F\widetilde{X} = 0$$

$$F = A'^{-T}EA^{-1}$$

$$E = \begin{bmatrix} 0 & -T_z & T_y \\ T_z & 0 & T_x \\ -T_y & T_x & 0 \end{bmatrix} R$$