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Camera Types &
Camera Models



Camera Types

e Static/Fixed Camera
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Camera Types

* \Wide angle and Fish-eye camera




Camera Types

e Omni-directional camera




Camera Types

e Pan-Tilt-Zoom (PTZ) camera
e Speed-Dome Camera
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Camera Types

Generally, light known as infrared rays indicates
electromagnetic waves on the optical wavelength with a
longer wavelength of between 0.7 um and 1 mm.

* Infrared (IR) Camera

Radio waves
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Camera Types

e Stereo camera



Camera Types

* Infrared-based depth camera
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IR Emitter Color Sensor
IR Depth Sensor

Microphdne Array



Motivation

* Getting more 3D information from images




Motivation

* Getting more 3D information from images
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Figure 2: Schematic diagram of the imaging geometry (see fext).




Motivation

* Getting more 3D information from images
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Motivation

* Integrate multiple views

Around View Monitoring System




Camera Projection Model

* Pinhole camera - also known as camera obscura, or
‘dark chamber”, is a simple camera without a lens and

with a single small aperture, a pinhole — effectively a
light-proof box with a small hole in one side.
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Camera Projection Model

* Pinhole camera model - describes the mathematical
relationship between the coordinates of a 3D point and
its projection onto the image plane of an ideal pinhole
camera, where the camera aperture is described as a
point and no lenses are used to focus light.

The model does not include
geometric distortions or
blurring of unfocused
objects caused by lenses
and finite sized apertures.
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Pinhole Camera Model
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Pinhole Camera Model
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Pinhole Camera Model
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Principal point offset
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INntrinsic Matrix

Is this form of K good enough? /0 x,]
K=0 f y,
0O 0 1
e non-square pixels (digital video)
) Skzwl . fa s X,
e radial distortion
K=10 f
0O 0 1
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Distortion
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No distortion Pin cushion Barrel

o Radial distortion of the image
- Caused by imperfect lenses

- Deviations are most noticeable for rays that pass
through the edge of the lens
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Distortion

X" = X"*(1 + k1r2 + kor4) + 2*p1x™y"' + p2(r2+2*x'2)
y" — yv*(1 + kqr2 + k2r4) + p1(r2+2*y'2) + 2*p2*Xl*y|
where r2 = x'2+y'2
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Camera rotation and translation
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Two kinds of parameters

. internal or intrinsic parameters such as focal length, optical
center, aspect ratio:
- what kind of camera?

- external or extrinsic (pose) parameters including rotation and
translation:
- where is the camera?

Intrinsic parameters
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Extrinsic parameters
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Camera Parameters
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Camera Coordinate System
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ther projection models
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Orthographic projection

e Special case of perspective projection
‘he PP is infinite
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- Also called “parallel projection”: (x,y, z) = (X, V)
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Other types of projections

e Scaled orthographic
- Also called “weak perspective”

100 O ‘;’; .
010 O s = v |= (dedy)
0 00 1/d]|] 1/d

o Affine projection
- Also called “paraperspective”
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lllusion
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lllusion
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Fun with perspective
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Fun with perspective
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Fun with perspective

é

) I — 1
. ) —
" —

Slide credit: Yung-Yu Chuang



Fun with perspective

perceived wall

perceived
size

real =
Ames room perceived
size real
size

viewing point
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Forced perspective in LOTR




Two kinds of parameters

. internal or intrinsic parameters such as focal length, optical
center, aspect ratio:
- what kind of camera?

- external or extrinsic (pose) parameters including rotation and
translation:
- where is the camera?

Intrinsic parameters
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Extrinsic parameters
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Camera Calibration



Camera Calibration

- Estimate both intrinsic and extrinsic parameters.
- Two main categories:

- Photometric calibration: uses reference objects (3D, 2D,
1D, OD) with known geometry

. Self calibration: only assumes static scene, e.g. structure
from motion

Intrinsic parameters

\x: K|RJt X

H—I

I

Extrinsic parameters
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Camera Calibration

- Known 2D coordinates in the image and their corrresponding
3D coordinates in the world, then we can solve the
parameters by

- linear regression (least squares)
. nonlinear optimization

Intrinsic parameters
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Camera Calibration

/. Zhang, “Flexible Camera Calibration by Viewing a Plane from Unknown
Orientations,” International Conference on Computer Vision (ICCV), 1999.
(cited number: 2561 from Google)

/. Zhang, “A flexible new technique for camera calibration,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2000.
(cited number: 9781 from Google)



Multi-plane calibration
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Images courtesy Jean-Yves Bouguet, Intel Corp.

Advantage
e Only requires a plane
« Don’t have to know positions/orientations
e Good code available online!

- Intel’s OpenCV library: http://www.intel.com/research/mrl/research/opencv/

- Matlab version by Jean-Yves Bouget:
http://www.vision.caltech.edu/bouguetj/calib_doc/index.html

- Zhengyou Zhang’s web site: http://research.microsoft.com/~zhang/Calib/

Slide credit: Yung-Yu Chuang



Notation

o 2
o 3
o T

D point : m=[u,v]’

ne usual pinhole :

sii=AR|(IM  with A4=|0 B v,

D point: M =[X,Y,Z]

—p ”/’\;l — [M,V,I]T
—>

0O 0 1

» Using the abbreviation AT for (A-1)T or (A7)



Estimating Homography




Homography
* Projective transformation

e Defined in 2D space as a mapping between a point
on a ground plane as seen from one camera, to the
same point on the ground plane as seen from a
second camera

X1 [h, h, h,|[x 8 unknowns |
, - at least 4 points
S|V | =|hy hy hyl|y are needed
1 hy hy 1|1

\ Homography



Homography - Case 1

 Case 1. a mapping between image coordinates and
ground plane coordinates
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Proof — Case 1
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sii = A[R | 1M

« We assume the model plane is on Z = 0, then

X -
v X

s|y| = A[r1 r, I, t] ol” A[r1 I, t] Y
1 1
L ] L

s = HM, with H = A[r1 r, t]



Homography - Case 2

e Case 1: a mapping between a point on a ground
plane as seen from one camera, to the same point
on the ground plane as seen from a second camera

SO

Ny A== R
’ \ /.n\ SO .



Proof — Case 2

» my is the image coordinate of Camera 1
» Im,is the image coordinate of Camera 2
» M is the coordinate on the ground plane

+ From Case 1:

s, m,=H M
~ Y ~ o~
s,m,=H.M =—=p sm,=H,H, " m,

—p sm,=Hm,



Homography - Case 3

e Case 1: a mapping between image coordinates of
Camera 1 and image coordinates of Camera 2,
where Camera 1 and Camera 2 is located in the
same position

Image 1

Image 2

~
corrected and fusionld



Image 1

Proof — Case 3 o

Image 2

si = A[R|{]M

» Let the position of camera is (0, 0, 0) in the global
coordinate system, then
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S|y =A[r1 r, I, O]Z =A[r1 r, r3]Y =AR|Y
1 | 4 Z




Image 1

Proof — Case 3 :

Image 2
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Estimating Homography

« Case 1: a mapping between
image coordinates and ground
plane coordinates




Estimating Homography

» Without loss of generality, we assume the
model planeison Z=0

S|y =A[r1 r, I, t] =A[r1 r, t]Y

1

X
Y
0
1

s = HM, with H = A[r1 r, t]



Constraints on Intrinsic Parameters

H=A[r1 I, t]

- Denote H=[h, h, h,]
r =A'h

then [hl h2 h3]= A’A[rl l‘2 t] # 1 1

-1
r, =A h2

» Since r, and r, are orthonormal

[Iel=lel— rTATA"R =hIATA™,
h/A"A"h, =0

1, =0




Closed-Form Solution

a Y u,
A=|0 [ v,
» Let / 0 0 1
B=A"A" ' '
B, B, By
=B, By By
_Bl3 5, Bss_
1 7 Vol —UyP
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Closed-Form Solution

» B Is symmetric, defined by a 6D vector
b=[Bn Blz Bzz Bl3 Bz3 B33:T
» Let ith column vector of Hbe b, =[n, &, h,[

T T
h;BA, =v,b

with Vi = \_hilhjl hilhj2 + hi2hj1 hi2hj2
hi3hj1 + hilhj3 hi3hj2 + hi2hj3 hi3hj3]

h/A”"A"h, =h]A"A'h,
h/A"A™h, =0




Closed-Form Solution

h/A”"A"™h, =h]A""A'h,
h/A"A7h, =0

+» Therefore, two constrains can be written
as

V{2 . b _ 0

(V11 — sz)

» If n images of the model plane are
observed
Vb =0

where V is a 2n x 6 matrix



Closed-Form Solution

» Ifn = 3, we will have in general a unique
solution b defined up to a scale factor

» The solution is well-known as the
eigenvector of V'V associated with the
smallest eigenvalue



Closed-Form Solution

» Once b is estimated, then

Vo = (B12B13 - BB, )/(BuBzz - Blzz)
A=B;; - [3123 TV (B1zBl3 - BB, )]/ B,

a=.AlB,

/3 = \/)LB11 /(BnBzz - B122)

y=-Bha A
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Slide credit: Yung-Yu Chuang
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Slide credit: Yung-Yu Chuang

Step 2: specifty corner order

Click on the four extreme comers of the rectangular pattem (first comer = ongin). . Image 1 Click an the four extreme comers of the rectangular pattem (first comer = ongin) . Image 1
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Slide credit: Yung-Yu Chuang

Step 3: corner extraction

The red crosses should be close to the image corners
———
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Slide credit: Yung-Yu Chuang
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Step 3

Extracted comers

Extracted comess

400

300
Xc (in camera fame)

20

100

400

Xc (in camera frame)

300

8 8 & B B

(Bwey) eiswes u) 24

Extracted comers

Extracted comers

&0

400 00
Ac (n camera frame)

a0

200

400 500

300
X (in camera frame)

100

B 8 B &

(owey esowed w) 3



Slide credit: Yung-Yu Chuang

Step 4: minimize projection error

Reprojection error (in pixel) - To exit: right button
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Calibration res .
Focal Length: fc = [ 657.46298 657.94673 ] =+ [ 06.31819 0.34046 ]
Principal point: cc = [ 3063.13665 242.56935 ] + [ 0.64682 8.59218 ]
Skew: alpha c = [ 6.006008 ] =+ [ 0.008000 ] => angle of pixel axes =
Distortion: kc = [ -06.25483 0.12143 -0.00021 0.00082 0.0008060 ]
Pixel error: err = [ B6.11689 8.115008 ]



Slide credit: Yung-Yu Chuang

Step 4: camera calibration
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Slide credit: Yung-Yu Chuang

Step 4: camera calibration




Slide credit: Yung-Yu Chuang
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Step 5: refinement

Reprojection error (in pixel) - To exit: right button
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Slide credit: Yung-Yu Chuang

Optimized parameters

Aspect ratio optimized (est_aspect _ratio = 1) -> both components of fc are estimated (DEFAULT).
Principal point optimized {(center_optim=1) - (DEFAULT). To reject principal point, set center_optim=8
Skew not optimized (est_alpha=08) - (DEFAULT)
Distortion not fully estimated {(defined by the variable est _dist):

Sixth order distortion not estimated (est _dist(5)=8) - (DEFAULT) .

Main calibration optimization procedure - Number of images: 20

Gradient descent iterations: 1...2...3...4...5...done
Estimation of uncertainties...done

Calibration results after optimization (with uncertainties):

Focal Length: fc = [ 657.46290 657.94673 ] =+ [ 0.31819 0.34046 ]

Principal point: cc = [ 383.13665 242 .56935 ] =+ [ 0.64682 8.59218 ]

Skeu: alpha_c = [ 0.00080 ] =+ [ 6.6080608 ] => angle of pixel axes = 90.00000 + 0.00000 degrees
Distortion: kc = [ -06.25483 8.12143 -0.008021 0.00002 0©0.00008 ] =+ [ 0.00248 0.00986 6.0
Pixel error: err = [ 0.11689 8.11560 ]

Note: The numerical errors are approximately three times the standard deviations (for reference).



Camera parameters

scene point o
Extrinsic parameters:
Camera frame 1 €<—-> Camera frame 2
. ' Intrinsic parameters:
<_ image|plane Image coordinates relative to
o \ /' camera < - Pixel coordinates
optical

center

» Extrinsic params: rotation matrix and translation vector

« Intrinsic params: focal length, pixel sizes (mm), image center
point, radial distortion parameters

We’ll assume for now that these parameters are
given and fixed.



Epipolar Geometry

CC’: baseline
e, €’: epipole
X:e, X .e: epipolar line
M. epipolar plane

The corresponding point must lie on the epipolar line



Epipolar Geometry

F: fundamental matrix
E: essential matrix

XFX =0
F=A"EA4"




