Digital Image Processing

Kuan-Wen Chen 2018/3/1

Digital Image Processing

Most popular textbook

• R.C. Gonzalez and R.E. Woods, Digital Image Processing, 4th edition, 2018.

Most famous image

Lena (512 x 512)

Digital Image Processing

What will I teach?

- Digital image fundamentals
 - Image format (grayscale/color image)
 - Image sampling and quantization
- Spatial domain image processing
 - Point processing
 - image enhancement
 - thresholding
 - histogram
 - Mask processing (spatial filtering)
 - smoothing
 - edge detection and sharpening

Digital Image Fundamentals

Intensity: 0 ~ 255

1 byte for 1 pixel

Position

For color image

· R: 0 ~ 255

· G: 0 ~ 255

· B: 0 ~ 255

• 3 byte for 1 pixel, ex: 0x0000FF =

Steps to be followed:

- 1. Read a RGB image
- 2. Represent the RGB image in the range [0 1]
- 3. Find HSI components

$$\theta = \cos^{-1} \left\{ \frac{\frac{1}{2} [(R-G) + (R-B)]}{[(R-G)^2 + (R-B)(G-B)^{\frac{1}{2}}]} \right\}$$

4.
$$H(Hue) = \int \theta$$
 If B<=G $360 - \theta$ If B>G

For color image (HSI color model)

· H: Hue

S: Saturation

· I: Intensity

5. S(Saturation)=1-
$$\frac{3}{(R+G+B)} [\min(R,G,B)]$$

6.
$$I(Intensity) = \frac{1}{3}(R + G + B)$$

Brightness Adaptation of Human Eye: Simultaneous Contrast

Image Sensors

Charge-Coupled Device (CCD)

Array sensor

Fundamentals of Digital Images

- An image: a multidimensional function of spatial coordinates.
- Spatial coordinate: (x,y) for 2D case such as photograph, (x,y,z) for 3D case such as CT scan images (x,y,t) for movies
- The function f may represent intensity (for monochrome images) or color (for color images) or other associated values.

Digital Image Types: Intensity Image

Digital Image Types: RGB Image

Digital Image Types: Binary Image

Digital Image Format: Bitmap (BMP)

A typical BMP file usually contains the following blocks of data:

- BMP File Header: Stores general information about the BMP file.
- **DIB header:** Stores detailed information about the bitmap image.
- Color Palette: Stores the definition of the colors being used for indexed color bitmaps.
 - Image pixels are stored with a color depth of 1, 4, 8, 16, 24, or 32 bits per pixel
- Bitmap Data: Stores the actual image, pixel by pixel.

Digital Image Format: Image compression

Image Compression

Image

Pixel Values

U	U	U	U	U	U	U	U		
0	0	0	0	0	0	0	0		
0	0	1	1	1	1	0	0		
0	0	1	1	1	1	0	0		
0	0	1	1	1	1	0	0		
0	0	1	1	1	1	0	0		
0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0		

repeated values

- = redundancy,
- opportunity for compression

Rawpixel data:

Run-Length Encoded:

 $8(0), 8(0), 2(0) \ 4(1) \ 2(0), 2(0) \ 4(1) \ 2(0), 2(0) \ 4(1) \ 2(0), 2(0) \ 4(1) \ 2(0), 8(0).$

Further Encoded:

2(8(0),) 4(2(0) 4(1) 2(0),) 2(8(0),).

Symmetry Encoded:

+(2(4(0)), 2(2(0)2(1)),).

"+" = four-fold symmetry

Digital Image Acquisition Process

Generating a Digital Image

FIGURE 2.16 Generating a digital image. (a) Continuous image. (b) A scan line from A to B in the continuous image, used to illustrate the concepts of sampling and quantization. (c) Sampling and quantization. (d) Digital scan line.

Image Sampling and Quantization

a b

FIGURE 2.17 (a) Continuos image projected onto a sensor array. (b) Result of image sampling and quantization.

Image sampling: discretize an image in the spatial domain

Spatial resolution / image resolution: pixel size or number of pixels

Spatial Resolution

FIGURE 2.19 A 1024 \times 1024, 8-bit image subsampled down to size 32 \times 32 pixels. The number of allowable gray levels was kept at 256.

-- zoom-in to show the effects of subsampling

a b c d e f

FIGURE 2.20 (a) 1024×1024 , 8-bit image. (b) 512×512 image resampled into 1024×1024 pixels by row and column duplication. (c) through (f) 256×256 , 128×128 , 64×64 , and 32×32 images resampled into 1024×1024 pixels.

Image Interpolation

 Nearest-Neighbor Interpolation

Bilinear Interpolation

a b c d e f

FIGURE 2.25 Top row: images zoomed from 128×128 , 64×64 , and 32×32 pixels to 1024×1024 pixels, using nearest neighbor gray-level interpolation. Bottom row: same sequence, but using bilinear interpolation.

Nearest-Neighbor Interpolation

Bilinear Interpolation

$$f(x,y_1)pprox rac{x_2-x}{x_2-x_1}f(Q_{11})+rac{x-x_1}{x_2-x_1}f(Q_{21}), \ f(x,y_2)pprox rac{x_2-x}{x_2-x_1}f(Q_{12})+rac{x-x_1}{x_2-x_1}f(Q_{22}).$$

$$f(x,y)pprox rac{y_2-y}{y_2-y_1}f(x,y_1) + rac{y-y_1}{y_2-y_1}f(x,y_2)$$

